RAZONES Y PROPORCIONES


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RAZONES Y PROPORCIONES"

Transcripción

1 1. Razón RAZONES Y PROPORCIONES Cuando comparemos 2 magnitudes mediante una división diremos que esas 2 magnitudes se encuentran en una razón. Por ejemplo, sean a y b dos cantidades, entonces una razón entre a y b es a : b = a, y lo leeremos a es a b. b Ejemplo 1 Supongamos que se realizó una encuesta entre los jóvenes entre 18 y 21 años cuya conclusión es: 1 de cada 5 jóvenes está inscrito en el Registro Electoral. Entonces, podemos decir que la razón entre los que votan y el total de jóvenes es 1 : 5. También podemos decir que la razón entre los que votan y los que no, es 1 : 4. Como vimos antes, ya que las razones son números racionales, entonces podemos amplificarla y simplificarla como nosotros queramos mientras se mantenga la razón. Ejemplo 2 Supongamos que queremos expresar los no votantes del ejemplo anterior con respecto al total. Entonces podemos hacerlo de todas estas formas 4 5 = 8 10 = = =... = 4k 5k. Dentro de la PSU, hay muchas razones en los enunciados, por lo tanto, es vital poder manejarlas con facilidad. Veamos más casos. Ejemplo 3 Las edades de 2 personas están en la razón 4 : 7. Qué edad tiene cada una si la diferencia de sus edades es de 15 años? Digamos que la primera persona tiene 4k años, para algún k Z. Entonces, la segunda persona tendrá 7k años. Luego, como la diferencia de sus edades es 15 años, entonces 15 = 7k 4k = 3k de donde podemos concluir que k = 5. Por lo tanto, las edades de las personas son 20 y 35 años, respectivamente. Ejemplo 4 Un ángulo de 90 o es dividido en 3 ángulos que se encuentran en la razón 4 : 5 : 9, Cuál es la medida de los ángulos? Llamemos α, β y γ a los ángulos. Digamos que α = 4k o, para algún k Z. Entonces, β = 5k o y finalmente γ = 9k o. Luego, como deben sumar 90 o, entonces 90 = 9k + 5k + 4k = 18k de donde podemos concluir que k = 10. Por lo tanto, las medidas de los ángulos son 20 o, 25 o y 45 o, respectivamente. 1

2 2. Proporciones Cuando tengamos 2 razones igualadas diremos que tenemos una proporción entre ambas razones. Por ejemplo, sean a, b, c y d cuatro magnitudes, entonces una proporción entre ambas razones es a b = c, y lo leeremos a es a b como c es a d. d Ejemplo 5 Se sabe que x es a 10 como 12 es a 15, entonces x =? Aplicando lo anterior, podemos resumir el problema en la igualdad x 10 = = 4 5 x = 4 10 = 4 2 = Proporcionalidad Directa Supongamos que vamos por la carretera camino a Viña del Mar y siempre a 120 km/h. Podemos reconocer 2 variables asociadas a esto: la distancia y el tiempo. Como sabemos, mientras más tiempo haya transcurrido desde que partimos nuestro viaje, más distancia habremos recorrido, es decir, a medida que aumenta el tiempo, aumenta la distancia. De la misma manera, el tiempo que falta para llegar disminuye a medida que disminuye la distancia entre nosotros y Viña del Mar. Esta relación se conoce como proporcionalidad directa, si una variable aumenta (disminuye), entonces la otra variable también aumenta (disminuye) en la misma proporción. Ejemplo 6 En el ejemplo anterior, las variables distancia recorrida y el tiempo transcurrido podemos llevarlas a una tabla para analizar su proporcionalidad. Distancia (km) Tiempo (hr) , , La clave de una proporcionalidad directa, es que la razón entre ambas variables se mantenga constante. Este valor que se mantiene igual, independiente de como cambien las variables, se conoce como constante de proporcionalidad. En el ejemplo del viaje, la constante es igual a 120 y es la definición de velocidad que se estudia en Física. v = d t = cte. 2

3 t Ojo 1 El gráfico que representa a una proporcionalidad directa es una linea recta que pasa por el origen, que estudiaremos en profundidad más adelante Proporcionalidad Inversa Supongamos que queremos pintar una casa y para ello contratamos 2 maestros. Ellos estiman que podrán pintar la casa completamente en 6 días. Como el tiempo no nos pareció adecuado, entonces decidimos contratar 2 maestros más (4 en total) y estiman que podrán pintar la casa en 3 días. Y como aún no nos parece suficiente, contratamos otros 2 maestros (6 en total) que estiman, podrán pintar toda la casa en 2 días lo cual nos parece bien. Podemos reconocer 2 variables asociadas a esto: los maestros y el tiempo. Claramente, mientras más maestros contratemos, menos tiempo demoraran. Esta relación se conoce como proporcionalidad inversa, si una variable aumenta (disminuye), entonces la otra variable también disminuye (aumenta) en la misma proporción. Ejemplo 7 En el ejemplo anterior, las variables maestros contratados y el tiempo que demorarán podemos llevarlas a una tabla para analizar su proporcionalidad. Maestros Tiempo (días) d La clave de una proporcionalidad inversa, es que el producto entre ambas variables se mantenga constante. En el ejemplo de la casa, la constante es igual a 12. 3

4 t Ojo 2 El gráfico que representa a una proporcionalidad inversa es una hipérbola, cuyo estudio va más allá de los contenidos de la PSU. m En resumen, si x e y son dos variables que se encuentran en Proporcionalidad Directa, entonces se cumple que x y = k Proporcionalidad Inversa, entonces se cumple que x y = k donde k es la constante de proporcionalidad respectiva. 4

5 3. Ejercicios Sin calculadora. Marcar sólo 1 alternativa. 1. Para un terreno de 0, 6 km de largo y 200 m de ancho, la razón entre largo y ancho es a) 3 : b) 3 : 1 c) 3 : 100 d) 1 : 3 e) 0, 6 : 2 2. Si u : v = 3 : 10 y u : w = 1 : 2, entonces cuál de las siguientes alternativas es falsa, sabiendo que v = 30? a) u 2 = 81 b) w v = 12 c) w 2 = 9 d) 2w = 36 e) u v = Si a : b = 3 : 5 y b : c = 5 : 9, entonces a : b : c = a) 3 : 9 : 10 b) 3 : 5 : 9 c) 5 : 9 : 3 d) 3 : 9 : 5 e) 6 : 18 : 5 4. Las edades de tres hermanas: María, Carmen y Lucía, son entre sí como 2 : 5 : 3. Si sus edades suman 30 años, entonces la edad de Lucía es a) 15 años. b) 9 años. c) 6 años. d) 3 años. e) 1 año. 5

6 5. Si a 1 = b 2 = c 3 y a + b + c = 36, entonces c b = a) 1 b) 3 c) 9 d) 6 e) A y B son magnitudes directamente proporcionales. Respecto a la siguiente tabla los valores de x e y son, respectivamente, a) 7 y 90. b) 7 y 60. c) 6 y 72. d) 8 y 90. A 5 x 15 B y e) 9 y Si 2x varía directamente con y e y = 4 cuando x = 3, entonces cuál es el valor de 2x cuando y = 16? a) 1 12 b) 1 3 c) 3 d) 6 e) 12 6

7 8. Si x : y = 15, entonces los valores de x e y, respectivamente, pueden ser: I) 15 y 1. II) 15 y 1. III) 105 y 7. a) Sólo I b) Sólo II c) Sólo III d) Sólo II y III e) I, II y III 9. Según el gráfico, si x e y son magnitudes directamente proporcionales. Entonces, cuál es el valor de a? y a) 1 3 b) 3 c) 6 a 6 d) 9 e) Si p, q y r son enteros positivos tales que p : q = 2 : 1 y q : r = 2 : 1, entonces cuál(es) de las aseveraciones siguientes es (son) verdadera(s)? I) p > r II) q < r III) q > p a) Sólo I b) Sólo II c) Sólo I y II d) Sólo II y III e) I, II y III x 7

8 11. Dos obreros, A y B, reciben como pago por un trabajo $275,000. Si A trabajó 2 días y B trabajó 3 días, cuánto le toca a cada uno, respectivamente? a) $ y $ b) $ y $ c) $ y $ d) $ y $ e) Ninguna de las anteriores. 12. Si a : b = 1 : 2 y b : c = 3 : 2, entonces cuando a = 3, c = a) 3 b) 4 c) 6 d) 8 e) Las cantidades a 2 y b son inversamente proporcionales. Si para a = 2, se obtiene b = 3, entonces cuál sería el valor de a, asociado a b = 1, 3? a) 1 2 b) 2 3 c) 3 4 d) 3 2 e) En una guarnición hay soldados con alimentos para 48 días. Si la dotación disminuyera a hombres, para cuántos días alcanzarían los alimentos? a) 80 b) 72 c) 64 d) 60 8

9 e) Si 10 obreros construyen una casa en 6 meses, cuánto tiempo se demorarían 12 obreros en construir una casa similar, trabajando el mismo número de horas al día? a) 7 meses y 6 días. b) 6 meses y 6 días. c) 5 meses. d) 4 meses y 24 días. e) 4 meses y 12 días. 16. Dada la sucesión de números 60, 30, 20, 15, 12,.... Cuál es el siguiente término? a) 10. b) 9. c) 6. d) 12. e) Una ciudad A dista 50 km de una ciudad B. Se puede determinar cuánto demora una persona en ir desde A a B si: (1) El primer día camina 10 km.. (2) Camina a razón de 10 km diarios. a) (1) por sí sola. b) (2) por sí sola. c) Ambas juntas, (1) y (2). d) Cada una por si sola, (1) ó (2). e) Se requiere información adicional. 9

10 18. En un curso la relación de niñas a niños es de 8 a 7, respectivamente. Se puede determinar el número de niñas si: (1) La razón de los que estudian y no estudian es 4 a 1. (2) Las niñas que no estudian son 6, y todos los niños estudian. a) (1) por sí sola. b) (2) por sí sola. c) Ambas juntas, (1) y (2). d) Cada una por si sola, (1) ó (2). e) Se requiere información adicional. 19. Se puede conocer el valor de x cuando y = 6 si: (1) x e y están en directa proporción. (2) x = 3 cuando y = 4. a) (1) por sí sola. b) (2) por sí sola. c) Ambas juntas, (1) y (2). d) Cada una por si sola, (1) ó (2). e) Se requiere información adicional. 20. Se puede conocer la distancia real entre dos pueblos A y B si: (1) En un mapa se encuentran 5 cm. (2) El mapa está dibujado en una escala de 1 : a) (1) por sí sola. b) (2) por sí sola. c) Ambas juntas, (1) y (2). d) Cada una por si sola, (1) ó (2). e) Se requiere información adicional. 1 B 2 E 3 B 4 B 5 D 6 A 7 E 8 D 9 D 10 A 11 D 12 B 13 E 14 B 15 C 16 A 17 B 18 C 19 C 20 C 10

Razones y Proporciones

Razones y Proporciones Razones y Proporciones Razon: Una razón es el cuociente entre dos cantidades. Se escribe a b donde a se denomina antecedente y b se denomina consecuente. o a:b y se lee: a es a b en Proporción: Una proporción

Más detalles

Razones, Proporciones, Tasas, Matemáticas I

Razones, Proporciones, Tasas, Matemáticas I Razones, Proporciones, Tasas, Porcentajes y Variaciones Números racionales expresados como fracción Dentro de los números reales, encontramos a los números racionales que se expresan como un cociente de

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad 1. CONJUNTOS NUMÉRICOS Empezaremos este curso de preparación PSU revisando los diferentes conjuntos numéricos con los que has trabajado tanto

Más detalles

La proporcionalidad. Proporcionalidad. Variable Tablas Proporciones. Constante de Directa Inversa proporcionalidad Gráfico Gráfico

La proporcionalidad. Proporcionalidad. Variable Tablas Proporciones. Constante de Directa Inversa proporcionalidad Gráfico Gráfico La proporcionalidad El concepto de proporcionalidad aparece constantemente en situaciones y fenómenos del diario vivir, como es el caso de los dibujos a escala, que son una aplicación de la proporcionalidad

Más detalles

RAZONES Y PROPORCIONES. 1.1 Una razón se expresa de cualquiera de las siguientes formas: a : b. en ambos casos se lee:

RAZONES Y PROPORCIONES. 1.1 Una razón se expresa de cualquiera de las siguientes formas: a : b. en ambos casos se lee: RAZONES Y PROPORCIONES 1 Una razón es una forma de comparar dos cantidades expresadas en la misma unidad de medida. 1.1 Una razón se expresa de cualquiera de las siguientes formas: a, b Q, b 0 a b o a

Más detalles

proporcionalidad numérica

proporcionalidad numérica IES Mata Jove tema 9: proporcionalidad curso 2009/2010 nombre: apellidos: proporcionalidad numérica Lee el texto siguiente y realiza las actividades propuestas Los griegos ya conocían las proporciones

Más detalles

RAZONES Y PROPORCIONES

RAZONES Y PROPORCIONES RAZONES Y PROPORCIONES Fundamentos de Matemáticas I Razones y proporciones Problemas de aplicación Video Previo a la actividad: I) Problemas de aplicación. Aunque no hay un método fijo para resolver los

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

APLICACIONES DE LAS PROPORCIONES:

APLICACIONES DE LAS PROPORCIONES: APLICACIONES DE LAS PROPORCIONES: Regla de tres simple directa e inversa. Regla de tres compuesta. Tanto por ciento, atendiendo los casos: - Calculo del porcentaje de un número. - Hallar un número conociendo

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho gcorbach@uc.cl Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 13 de agosto

Más detalles

10 Funciones polinómicas y racionales

10 Funciones polinómicas y racionales 8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

MATEMÁTICAS I SUCESIONES Y SERIES

MATEMÁTICAS I SUCESIONES Y SERIES MATEMÁTICAS I SUCESIONES Y SERIES. Sucesiones En casi cualquier situación de la vida real es muy frecuente encontrar magnitudes que varían cada cierto tiempo. Por ejemplo, el saldo de una cuenta bancaria

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

unidad 8 Funciones lineales

unidad 8 Funciones lineales Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado

Más detalles

Tutorial MT-m2. Matemática 2006. Tutorial Nivel Medio. Porcentajes y proporción compuesta

Tutorial MT-m2. Matemática 2006. Tutorial Nivel Medio. Porcentajes y proporción compuesta 24678902467890 M ate m ática Tutorial MT-m2 Matemática 2006 Tutorial Nivel Medio Porcentajes y proporción compuesta Matemática 2006 Tutorial Porcentajes y Proporción compuesta Marco Teórico. Porcentajes:

Más detalles

PROPORCIONES Y SEMEJANZA

PROPORCIONES Y SEMEJANZA PROPORCIONES Y SEMEJANZA Veamos el siguiente ejemplo: Cuando tomamos una fotografía con nuestra cámara, si pedimos al laboratorio fotográfico que nos imprima dos copias de tamaño 5 X 7 pulgadas, las figuras

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

Guía Práctica N 14: Función Logarítmica

Guía Práctica N 14: Función Logarítmica Fuente: Pre Universitario Pedro de Valdivia Guía Práctica N 4: Función Logarítmica LOGARITMOS FUNCIÓN LOGARÍTMICA DEFINICIÓN El logaritmo de un número real positivo b en base a, positiva y distinta de,

Más detalles

Unidad 4. Capitalización compuesta y descuento compuesto

Unidad 4. Capitalización compuesta y descuento compuesto Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital

Más detalles

La pregunta es Cuánto tardaremos con las dos mangueras? La ecuación que describe la pregunta es

La pregunta es Cuánto tardaremos con las dos mangueras? La ecuación que describe la pregunta es RAZONAMIENTO MATEMÁTICO 1.- LLENANDO UNA ALBERCA Tienes que llenar una alberca y tienes dos mangueras de diferente grosor. Si utilizas la manguera ancha tardaras 240 minutos (4 horas) en llenar la alberca.

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES 1. Magnitudes Directamente Proporcionales Kg de café Precio ( ) 1 4 2 8 3 12 4 16 5 20 8 32 Estas dos magnitudes, peso en kg de café y su precio en, se dice

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3 TEMA 8: SEMEJANZA Y TRIGONOMETRÍA. Teorema de Thales.. Teorema de Thales Si se trazan un conjunto de rectas paralelas entre sí: L, L, L, que cortan a dos rectas r y s, los segmentos que determinan sobre

Más detalles

GUIA DE TRABAJO Materia: Matemáticas Guía #1. Tema: Regla de tres. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO Materia: Matemáticas Guía #1. Tema: Regla de tres. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: GUIA DE TRABAJO Materia: Matemáticas Guía #1. Tema: Regla de tres. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.

Más detalles

Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt.

Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt. Teel 1011: Circuitos de Corriente Directa (DC) Unidad 3: Ley de Ohm y ley de Watt Introducción 1.1 Bienvenida Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt. 1

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS E L UNI ág. 1 ágina 16 RTI Semejanza de figuras 1 uáles de estas figuras son semejantes? uál es su razón de semejanza? La primera y la cuarta son semejantes, porque todos los lados

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,... Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes

Más detalles

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9 MATEMÁTICAS 2º ESO EJERCICIOS/PROBLEMAS: PROPORCIONALIDAD NOMBRE FECHA 1.- Escribe = o entre cada par de razones según formen o no proporción 1 3 5 15 9 3 2 4 9 9 4 2 2.- Calcula el término desconocido

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

Ecuaciones Algebraicas

Ecuaciones Algebraicas 1 Capítulo Ecuaciones Algebraicas M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Prueba de Diagnóstico de Matemática Primer Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015

Prueba de Diagnóstico de Matemática Primer Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN Prueba de Diagnóstico de Matemática Primer Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 015 NOMBRE

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA

SOLUCIONES MINIMOS 2º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA SOLUCIONES MINIMOS º ESO TEMA 7 TEOREMA DE PITÁGORAS.SEMEJANZA Ejercicio nº 1.- Los lados de un triángulo miden, respectivamente, 9 cm, 1 cm y 15 cm. Averigua si el triángulo es rectángulo. Según el teorema

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

REACTIVOS MATEMÁTICAS 3

REACTIVOS MATEMÁTICAS 3 REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 1 1 SLUINES LS EJERIIS E L UNI Pág. 1 Página 175 PRTI Semejanza de figuras 1 uáles de estas figuras son semejantes? uál es su razón de semejanza? La primera y la cuarta son semejantes, porque todos los

Más detalles

Guía Relaciones Proporcionales Nivel : 8º año 2011 Prof. Juan Schuchhardt E

Guía Relaciones Proporcionales Nivel : 8º año 2011 Prof. Juan Schuchhardt E 1 I.- Resumen de contenidos Relaciones proporcionales Razón Una razón entre dos cantidades es una comparación entre las cantidades que se realiza mediante un cociente, se anota a : b o bien b a, y se lee

Más detalles

Escalas. Escalas. Distancia Mapa. Distancia Real. Escala

Escalas. Escalas. Distancia Mapa. Distancia Real. Escala Qué es la Escala? Escalas La escala se define como la razón n existente entre la distancia del mapa y la distancia en el terreno. Se refiere al grado de reducción n del mapa con relación n a la Tierra.

Más detalles

UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL 11 TALLER Nº 7 PROPORCIONALIDAD REGLA DE TRES SIMPLE Y COMPUESTA

UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL 11 TALLER Nº 7 PROPORCIONALIDAD REGLA DE TRES SIMPLE Y COMPUESTA UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL TALLER Nº 7 PROPORCIONALIDAD REGLA DE TRES SIMPLE Y COMPUESTA RESEÑA HISTÓRICA: BEREMIZ, el matemático del libro El hombre que Calculaba, decía que

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

6 Proporcionalidad numérica

6 Proporcionalidad numérica 85 _ 0-0.qxd 7//07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Es muy importante que los alumnos sean capaces de discernir si dos magnitudes son proporcionales. A veces cometen el error de pensar

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

PROBLEMAS DE APLICACIÓN (TRIÁNGULOS EN GENERAL)

PROBLEMAS DE APLICACIÓN (TRIÁNGULOS EN GENERAL) PROBLEMAS DE APLICACIÓN (TRIÁNGULOS EN GENERAL) En las técnicas anteriores utilizamos triángulos rectángulos, si ahora hacemos uso de los casos de resolución de triángulos cualesquiera podemos resolver

Más detalles

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la FIGURAS SEMEJANTES Son figuras son semejantes si tienen la misma forma, pero distinto tamaño. Una figura es semejante a otra si has multiplicado a todos y cada uno de los lados de la primera por el mismo

Más detalles

Ecuación de primer grado con una incógnita. Ejercicios y Solucionario

Ecuación de primer grado con una incógnita. Ejercicios y Solucionario Ecuación de primer grado con una incógnita. Ejercicios y Solucionario 1. Traduce al lenguaje algebraico las siguientes frases: a) la mitad de un número más ocho. b) el doble de un número menos su mitad

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

Un obrero efectúa la tercera parte de un trabajo, un segundo obrero hace las tres cuartas partes del resto y un tercer obrero termina el trabajo:

Un obrero efectúa la tercera parte de un trabajo, un segundo obrero hace las tres cuartas partes del resto y un tercer obrero termina el trabajo: En una tormenta de granizo han sido dañadas manzanas de cada en la huerta de Ana, mientras que en la de Clara han sido dañadas de cada. En qué huerta hay, proporcionalmente, más manzanas dañadas? Un obrero

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO

MATEMÁTICA CPU Práctica 1 NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO MATEMÁTICA CPU Práctica NÚMEROS REALES ECUACIONES E INECUACIONES REPRESENTACIONES EN LA RECTA Y EN EL PLANO. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8

Más detalles

Modelos Matemáticos de Variación

Modelos Matemáticos de Variación Modelos Matemáticos de Variación Carlos A. Rivera-Morales Precálculo 1 Tabla de Contenido Contenido : Contenido Discutiremos: modelos matemáticos de variación : Contenido Discutiremos: modelos matemáticos

Más detalles

Vectores y Escalares

Vectores y Escalares Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza

Más detalles

Proporcionalidad geométrica

Proporcionalidad geométrica TEMA 9: Proporcionalidad geométrica INTRODUCCIÓN: THALES DE MILETO Thales, filósofo, astrónomo y matemático griego nació en Mileto en el año 624 a. de C. y murió a la edad de 78 años durante la quincuagésima

Más detalles

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x) UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. ENUNCIADOS Resuelve: a) b) 4 c) d) 4 4 e) f ) 7 g) h) Resuelve las ecuaciones siguientes: a) b) 7 c) d) 4 Resuelve las ecuaciones siguientes: a) b) ( ) ( ) ( ) ( 4) 7 c) [( ) ( ) ] d) 4 ( ) e) 0,(

Más detalles

José María Sorando Muzás Teoría de Números Sumas de impares y de pares 1 + 3 + 5 +... + (2n + 1) es un cuadrado perfecto

José María Sorando Muzás Teoría de Números Sumas de impares y de pares 1 + 3 + 5 +... + (2n + 1) es un cuadrado perfecto La Al pensar que todo podía explicarse con los números, los Pitagóricos establecieron gran cantidad de clasificaciones entre los éstos y se dedicaron a descubrir sus propiedades. Así iniciaron una rama

Más detalles

UNIDAD 1. Los números racionales

UNIDAD 1. Los números racionales Matemática UNIDAD 1. Los números racionales 1 Medio En esta Unidad se sistematizan y profundizan los conocimientos acerca del conjunto de los racionales, tomando como base los conocimientos que el estudiante

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

EJERCICIOS DE INECUACIONES

EJERCICIOS DE INECUACIONES EJERCICIOS DE INECUACIONES REPASO DE DESIGUALDADES: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución mediante la

Más detalles

Teoría de conjuntos. Tema 1: Teoría de Conjuntos.

Teoría de conjuntos. Tema 1: Teoría de Conjuntos. Tema 1: Teoría de Conjuntos. La teoría de Conjuntos es actualmente una de las más importantes dentro de la matemática. Muchos de los problemas que se le han presentado a esta disciplina en los últimos

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

MATEMÁTICAS 1º E.S.O.

MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. UNIDAD 1. Números naturales Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división

Más detalles

Integration of Informatics and Quantitative Concepts in Biology at UPR

Integration of Informatics and Quantitative Concepts in Biology at UPR Modelos de variación Objetivos: Al finalizar el estudiante, Definirá variación directa. Definirá variación inversa. Definirá variación conjunta. Utilizará el modelo de variación directa para modelar situaciones

Más detalles

CUADERNILLO DE EJERCICIOS PARA EXAMEN DE INGRESO A 3er AÑO. ÁREA: Matemática

CUADERNILLO DE EJERCICIOS PARA EXAMEN DE INGRESO A 3er AÑO. ÁREA: Matemática LICEO AERONÁUTICO MILITAR CUERPO DE CADETES ESCUADRÓN ESTUDIOS CUADERNILLO DE EJERCICIOS PARA EXAMEN DE INGRESO A 3er AÑO Números Enteros: Resuelve: 1) -(-7) - [-3 - (-1+2)] + (-8) = ÁREA: Matemática Año

Más detalles

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.

Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35. Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90

Más detalles

Matemáticas financieras 1.1. Razones y proporciones

Matemáticas financieras 1.1. Razones y proporciones MATEMÁTICAS FINANCIERAS PROFESOR: MARCEL RUIZ MARTÍNEZ. marcelrzm@hotmail.com; marcelusoacademico@hotmail.com; marcelrzm@yahoo.com.mx; marcelrz00@yahoo.com.mx; Contenido del curso: Unidad I. Fundamentos

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

TEMA 2: EL INTERÉS SIMPLE

TEMA 2: EL INTERÉS SIMPLE TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización

Más detalles

LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA

LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA Definimos una línea recta como una sucesión infinita de puntos consecutivos que se extienden en una misma dirección. Ahora, nuestros esfuerzos

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS UNIDAD 5 FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES Y LOGARÍTMICAS Página. La distancia al suelo de una barquilla de la noria varía conforme ésta gira. Representamos gráficamente la función que da la altura

Más detalles

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional 1 GUÍA No.3 REPARTOS PROPORCIONALES Reparto Proporcional Es un procedimiento de cálculo que permite repartir cierta cantidad, en partes proporcionales a otras. Se dice que el reparto es simple, cuando

Más detalles

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento Circular. Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

Escribiendo números usando la notación

Escribiendo números usando la notación Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es

Más detalles

Cinemática con Calculadora Gráfica

Cinemática con Calculadora Gráfica Página Nº5 Mª Oliva San Martín Fernández. Profesora de Matemáticas IES Mata-Jove (Gijón-Asturias) Abel Martín. Profesor de Matemáticas del IES Pérez de Ayala (Oviedo-Asturias) y colaboradores del Departamento

Más detalles

EJERCICIOS DE LA UNIDAD DE TRIÁNGULOS

EJERCICIOS DE LA UNIDAD DE TRIÁNGULOS EJERCICIOS DE LA UNIDAD DE TRIÁNGULOS TEOREMA DE TALES 1. Usa el Teorema de Tales para calcular x a) b) c) d) 2. Aplicando el teorema de Tales, divide un segmento de 9 centímetros de longitud en 5 partes

Más detalles

4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA.

4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA. 4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA. 4.1. Características generales Consideramos que una variable x puede adquirir los valores a,b,c,d, y otra variable los valores a, b, c, d, x e y son directamente

Más detalles